论文标题

Neolix开放数据集用于自动驾驶

The NEOLIX Open Dataset for Autonomous Driving

论文作者

Wang, Lichao, Lei, Lanxin, Song, Hongli, Wang, Weibao

论文摘要

随着5G技术的逐渐成熟度,自主驾驶技术在研究中引起了更多的关注。自主驾驶的车辆依赖人工智能,视觉计算,雷达,监视设备和GP的合作,哪些计算机可以自动,安全地安全地操作机动车辆,而无需人力干扰。但是,用于训练的大规模数据集,用于训练的大规模数据集,并且在强大的perception perception perception perception perception percoppment中仍然是一块辣妹。在本文中,我们介绍了Neolix数据集及其在自动驾驶区域中的应用。我们的数据集约有30,000帧,带有点云LA-bels,超过600K的3D边界盒带有声名狼藉的框架。数据收集涵盖了乘数和各种驾驶条件,包括日,夜,黎明,黄昏和阳光一天。为了标记此完整的数据集,我们开发了为每个任务提出标签过程指定的变量工具和算法。可以预期,库数据集和相关算法可以支持和动力研究人员,以在计算机VI-Sion领域的自主驾驶中进一步发展。

With the gradual maturity of 5G technology,autonomous driving technology has attracted moreand more attention among the research commu-nity. Autonomous driving vehicles rely on the co-operation of artificial intelligence, visual comput-ing, radar, monitoring equipment and GPS, whichenables computers to operate motor vehicles auto-matically and safely without human interference.However, the large-scale dataset for training andsystem evaluation is still a hot potato in the devel-opment of robust perception models. In this paper,we present the NEOLIX dataset and its applica-tions in the autonomous driving area. Our datasetincludes about 30,000 frames with point cloud la-bels, and more than 600k 3D bounding boxes withannotations. The data collection covers multipleregions, and various driving conditions, includingday, night, dawn, dusk and sunny day. In orderto label this complete dataset, we developed vari-ous tools and algorithms specified for each task tospeed up the labelling process. It is expected thatour dataset and related algorithms can support andmotivate researchers for the further developmentof autonomous driving in the field of computer vi-sion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源