论文标题

Factorizenet:在量化约束下进行有效网络体系结构探索的渐进深度分解

FactorizeNet: Progressive Depth Factorization for Efficient Network Architecture Exploration Under Quantization Constraints

论文作者

Yun, Stone, Wong, Alexander

论文摘要

深度分解和量化已成为设计有效的深卷积神经网络(CNN)体系结构的两种主要策略,该体系结构量身定制,用于在边缘上进行低功率推断。但是,对不同的深度分解选择如何影响CNN中每一层的最终分布,尤其是在量化的权重和激活的情况下,仍然几乎没有详细的理解。在这项研究中,我们在量化约束下介绍了有效的CNN体​​系结构探索的进行性深度分解策略。通过以渐进的方式增加算法的深度分解粒度,提出的策略可以对层的分布进行细粒度的低级分析。因此,在固定精确量化下,可以对效率 - 准确性权衡的深入增长,层级级别的见解。这样的渐进深度分解策略还可以根据所需的效率 - 准确性要求有效地识别最佳深度型宏观结构设计(我们在这里将其称为Factorizenet)。

Depth factorization and quantization have emerged as two of the principal strategies for designing efficient deep convolutional neural network (CNN) architectures tailored for low-power inference on the edge. However, there is still little detailed understanding of how different depth factorization choices affect the final, trained distributions of each layer in a CNN, particularly in the situation of quantized weights and activations. In this study, we introduce a progressive depth factorization strategy for efficient CNN architecture exploration under quantization constraints. By algorithmically increasing the granularity of depth factorization in a progressive manner, the proposed strategy enables a fine-grained, low-level analysis of layer-wise distributions. Thus enabling the gain of in-depth, layer-level insights on efficiency-accuracy tradeoffs under fixed-precision quantization. Such a progressive depth factorization strategy also enables efficient identification of the optimal depth-factorized macroarchitecture design (which we will refer to here as FactorizeNet) based on the desired efficiency-accuracy requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源