论文标题

S2FGAN:语义意识的互动素描到面翻译

S2FGAN: Semantically Aware Interactive Sketch-to-Face Translation

论文作者

Yang, Yan, Hossain, Md Zakir, Gedeon, Tom, Rahman, Shafin

论文摘要

交互式面部图像操纵试图使用照片真实的面部和/或语义面膜作为输入来编辑单个面部和多个面部属性。在没有照片现实图像(仅可用的草图/掩码)的情况下,以前的方法只能检索原始面部,但忽略了在翻译过程中辅助模型可控性和多样性的潜力。本文提出了一个名为S2FGAN的草图到图像生成框架,旨在提高用户从简单草图中解释和灵活性编辑的脸部属性编辑的能力。所提出的框架修改了受生成对抗网络(GAN)训练的受约束潜在空间语义。我们使用两个潜在空间来控制面部外观并调整生成的面部的所需属性。用户可以通过在生成过程中涉及语义信息来命令模型来修饰生成的图像,而不是通过使用参考图像来限制翻译过程。这样,我们的方法只能通过指定要更改的属性来操纵单个或多个面部属性。对Celebamask-HQ数据集的广泛实验结果经验表明了我们对这项任务的卓越性能和有效性。我们的方法通过利用对属性强度的更大控制,成功地超过了属性操纵的最先进方法。

Interactive facial image manipulation attempts to edit single and multiple face attributes using a photo-realistic face and/or semantic mask as input. In the absence of the photo-realistic image (only sketch/mask available), previous methods only retrieve the original face but ignore the potential of aiding model controllability and diversity in the translation process. This paper proposes a sketch-to-image generation framework called S2FGAN, aiming to improve users' ability to interpret and flexibility of face attribute editing from a simple sketch. The proposed framework modifies the constrained latent space semantics trained on Generative Adversarial Networks (GANs). We employ two latent spaces to control the face appearance and adjust the desired attributes of the generated face. Instead of constraining the translation process by using a reference image, the users can command the model to retouch the generated images by involving the semantic information in the generation process. In this way, our method can manipulate single or multiple face attributes by only specifying attributes to be changed. Extensive experimental results on CelebAMask-HQ dataset empirically shows our superior performance and effectiveness on this task. Our method successfully outperforms state-of-the-art methods on attribute manipulation by exploiting greater control of attribute intensity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源