论文标题
多尺度比较连接组学
Multiscale Comparative Connectomics
论文作者
论文摘要
Connectome是大脑中结构和/或功能连接的映射,提供了其超高的神经生物学表型的复杂表示。这种信息丰富的数据模式有可能改变我们对大脑连通性与神经过程,疾病和疾病模式之间关系的理解。但是,用于分析连接组的现有计算技术通常不足以询问多主体连接组数据集:许多当前方法的目的是仅设计用于分析单个连接组,或者利用启发式图形统计量,而这些启发式图形统计量无法捕获大脑区域之间多轴向连接的完整拓扑。为了实现更严格的连接组分析,我们引入了一组可解释的效果大小衡量标准,这些量度是由随机图模型中最新的理论进步所激发的。这些措施促进了网络拓扑不同尺度上多个连接组的同时分析,从而实现了与表型谱相关的分层大脑结构的稳健和可重复的发现。除了解释我们算法的理论基础和保证外,我们还通过广泛的仿真研究和实际数据实验证明了它们优于当前最新连接方法。使用一组从遗传上不同的小鼠菌株(包括BTBR鼠标 - 一种自闭症的标准模型)和三种行为野生型的高分辨率连接组),我们说明了我们的方法如何成功地发现了多种受试者的潜在信息在多对象连接界数据中的潜在信息,并使有价值的见解可捕获其他方法,从而捕获了其他方法。重现我们分析所需的数据和代码,请访问https://github.com/neurodata/mcc。
The connectome, a map of the structural and/or functional connections in the brain, provides a complex representation of the neurobiological phenotypes on which it supervenes. This information-rich data modality has the potential to transform our understanding of the relationship between patterns in brain connectivity and neurological processes, disorders, and diseases. However, existing computational techniques used to analyze connectomes are oftentimes insufficient for interrogating multi-subject connectomics datasets: many current methods are either solely designed to analyze single connectomes or leverage heuristic graph statistics that are unable to capture the complete topology of multiscale connections between brain regions. To enable more rigorous connectomics analysis, we introduce a set of robust and interpretable effect size measures motivated by recent theoretical advances in random graph models. These measures facilitate simultaneous analysis of multiple connectomes across different scales of network topology, enabling the robust and reproducible discovery of hierarchical brain structures that vary in relation to phenotypic profiles. In addition to explaining the theoretical foundations and guarantees of our algorithms, we demonstrate their superiority over current state-of-the-art connectomics methods through extensive simulation studies and real-data experiments. Using a set of high-resolution connectomes obtained from genetically distinct mouse strains (including the BTBR mouse -- a standard model of autism -- and three behavioral wild-types), we illustrate how our methods successfully uncover latent information in multi-subject connectomics data and yield valuable insights into the connective correlates of neurological phenotypes that other methods do not capture. The data and code necessary to reproduce our analyses are available at https://github.com/neurodata/MCC.