论文标题
在遗传学对称空间上的正常多种不变连接
A normal variety of invariant connections on hermitian symmetric spaces
论文作者
论文摘要
我们在Hermitian对称空间$ M = g/k $上引入了$ g $ invariant连接。参数空间带有正常品种的结构,并具有规范的抗旋晶性。抗晶状体相关性的固定点恰恰是$ Q上的可整合不变的复合结构。
We introduce a class of $G$-invariant connections on a homogeneous principal bundle $Q$ over a hermitian symmetric space $M=G/K$. The parameter space carries the structure of normal variety and has a canonical anti-holomorphic involution. The fixed points of the anti-holomorphic involution are precisely the integrable invariant complex structures on $Q.$ This normal variety is closely related to quiver varieties and, more generally, to varieties of commuting matrix tuples modulo simultaneous conjugation.