论文标题

基于分解量子状态的新型量子步行

A new type of quantum walks based on decomposing quantum states

论文作者

Kiumi, Chusei

论文摘要

在本文中,将两态分解型量子步行(DQW)在一条线上引入,作为2态量子步行(QW)的扩展。 DQW的时间演变用两个不同的矩阵定义,一个分配给真实分量,另一个分配给量子状态的假想组件。与普通的2态QW不同,定位和扩散现象可以在DQW中重合。此外,DQW始终可以通过相同的概率度量转换为相应的4状态QW。换句话说,具有2个状态的DQW可以实现一类4州QW。在这项工作中,我们透露有一个与4态Grover Walk相对应的2态DQW。然后,我们得出了与4状态QW相对应的DQW类的弱极限定理,该QW可以被视为广义的Grover Walks。

In this paper, the 2-state decomposed-type quantum walk (DQW) on a line is introduced as an extension of the 2-state quantum walk (QW). The time evolution of the DQW is defined with two different matrices, one is assigned to a real component, and the other is assigned to an imaginary component of the quantum state. Unlike the ordinary 2-state QWs, localization and the spreading phenomenon can coincide in DQWs. Additionally, a DQW can always be converted to the corresponding 4-state QW with identical probability measures. In other words, a class of 4-state QWs can be realized by DQWs with 2 states. In this work, we reveal that there is a 2-state DQW corresponding to the 4-state Grover walk. Then, we derive the weak limit theorem of the class of DQWs corresponding to 4-state QWs which can be regarded as the generalized Grover walks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源