论文标题

与更新过程的Covid-19的半机械贝叶斯建模

Semi-Mechanistic Bayesian Modeling of COVID-19 with Renewal Processes

论文作者

Bhatt, Samir, Ferguson, Neil, Flaxman, Seth, Gandy, Axel, Mishra, Swapnil, Scott, James A.

论文摘要

我们提出了一种通用的贝叶斯方法来建模流行病,例如Covid-19。该方法是由大流行期间进行的特定分析提出的,特别是关于非药物干预措施(NPI)在减少11个欧洲国家的Covid-19传播中的影响的分析。该模型通过回归框架来参数变化的繁殖数$ r_t $,在该框架中,协变量可以是政府干预措施或移动性模式的变化。这允许在区域和部分合并之间进行联合拟合,以共享力量。这一创新对于我们及时估计了锁定和其他NPI在欧洲流行病中的影响至关重要,欧洲流行病的有效性是由后来的流行病来证实的。我们的框架为潜在的感染和观察结果提供了完全生成的模型,包括死亡,病例,住院,ICU入院和血清阳性调查。 NPIS和流动性的混杂性,围绕模型在COVID-19大流行期间使用的一个问题。我们使用我们的框架来探索这个问题。我们已经开了一个R套件的流行病,该软件包在Stan中实施了我们的方法。纽约州,田纳西州和苏格兰使用该模型的版本来估计当前情况并做出政策决定。

We propose a general Bayesian approach to modeling epidemics such as COVID-19. The approach grew out of specific analyses conducted during the pandemic, in particular an analysis concerning the effects of non-pharmaceutical interventions (NPIs) in reducing COVID-19 transmission in 11 European countries. The model parameterizes the time varying reproduction number $R_t$ through a regression framework in which covariates can e.g be governmental interventions or changes in mobility patterns. This allows a joint fit across regions and partial pooling to share strength. This innovation was critical to our timely estimates of the impact of lockdown and other NPIs in the European epidemics, whose validity was borne out by the subsequent course of the epidemic. Our framework provides a fully generative model for latent infections and observations deriving from them, including deaths, cases, hospitalizations, ICU admissions and seroprevalence surveys. One issue surrounding our model's use during the COVID-19 pandemic is the confounded nature of NPIs and mobility. We use our framework to explore this issue. We have open sourced an R package epidemia implementing our approach in Stan. Versions of the model are used by New York State, Tennessee and Scotland to estimate the current situation and make policy decisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源