论文标题

大脑网络的拓扑学习

Topological Learning for Brain Networks

论文作者

Songdechakraiwut, Tananun, Chung, Moo K.

论文摘要

本文提出了一个新颖的拓扑学习框架,该框架通过持续的同源性整合了不同大小和拓扑的网络。通过引入计算高效的拓扑损失,使这种具有挑战性的任务成为可能。所提出的损失的使用绕过与匹配网络相关的内在计算瓶颈。我们验证了广泛的统计模拟中的方法,以评估其有效性,以区分不同拓扑的网络。在一项双脑成像研究中进一步证明了该方法,我们确定大脑网络在遗传上是可遗传的。这里的挑战是由于难以覆盖从静止状态功能性MRI获得的拓扑上不同的功能性脑网络,以通过扩散MRI获得的模板结构大脑网络。

This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源