论文标题
瓦格纳(Wagner)加权子图的某些应用多项式计数
Some applications of Wagner's weighted subgraph counting polynomial
论文作者
论文摘要
我们使用Wagner的加权子图计数多项式来证明,在线图上,抗铁磁ising模型的分区函数是真正的根系,并证明边缘盖的根最多具有$ 4 $。此外,我们讨论了我们的结果如何与有效算法相关,以近似计算这些多项式的评估。
We use Wagner's weighted subgraph counting polynomial to prove that the partition function of the anti-ferromagnetic Ising model on line graphs is real rooted and to prove that roots of the edge cover polynomial have length at most $4$. We moreover discuss how our results relate to efficient algorithms for approximately computing evaluations of these polynomials.