论文标题
截短的棕彼得光谱的红移和乘法
Redshift and multiplication for truncated Brown-Peterson spectra
论文作者
论文摘要
我们为每种Prime $ P $和高度$ n $的$ \ Mathbb {e} _3 $ - $ \ MATHRM {e} _3 $ - $ \ mathrm {bp} $配备$ \ mathrm {bp} \ langle n \ rangle $和$ \ mathbb {e} _3 $ - $ \ mathrm {bp} $。代数$ k $ - 此戒指的理论恰好是彩色高度$ n+1 $,而地图$ \ m atrm {k}(\ m athrm {bp} \ langle n \ rangle n \ rangle)_ {(p)} \ Mathrm {k}(\ Mathrm {bp} \ langle n \ rangle)_ {(p)} $在光纤上方界限。
We equip $\mathrm{BP} \langle n \rangle$ with an $\mathbb{E}_3$-$\mathrm{BP}$-algebra structure, for each prime $p$ and height $n$. The algebraic $K$-theory of this ring is of chromatic height exactly $n+1$, and the map $\mathrm{K}(\mathrm{BP}\langle n \rangle)_{(p)} \to \mathrm{L}_{n+1}^{f} \mathrm{K}(\mathrm{BP}\langle n\rangle)_{(p)}$ has bounded above fiber.