论文标题

代数深入的深网(AIDN):代表代数结构的深度学习方法

Algebraically-Informed Deep Networks (AIDN): A Deep Learning Approach to Represent Algebraic Structures

论文作者

Hajij, Mustafa, Zamzmi, Ghada, Dawson, Matthew, Muller, Greg

论文摘要

深度学习和数学界面的核心问题之一是构建可以自动从观察到的数据中揭示基本数学定律的学习系统的问题。在这项工作中,我们迈出了一步,朝着代数结构和深度学习之间建造桥梁,并介绍\ textbf {aidn},\ textit {elgebraiter {elgebraitelmedsminallysmally form formed deep Networks}。 \ textbf {aidn}是一种深度学习算法,可以用一组深层神经网络表示任何有限的代数对象。通过\ textbf {aidn}获得的深网是\ textit {代数信息,因为它们满足了代数结构的代数关系,该代数是作为算法输入的代数结构。我们提出的网络可以鲁棒计算最有限的代数结构(例如组,关联代数和LIE代数)的线性和非线性表示。我们评估我们提出的方法,并证明其适用于在低维拓扑中具有重要意义的代数和几何对象。特别是,我们研究了Yang-Baxter方程的解决方案及其在编织组上的应用。此外,我们研究了Temperley-Lieb代数的表示。最后,我们展示了使用Reshetikhin-Turaev构造,如何利用我们提出的深度学习方法来构建新的链接不变性。我们认为,所提出的方法将踏上通往代数和几何结构的深度学习中有希望的未来研究的道路。

One of the central problems in the interface of deep learning and mathematics is that of building learning systems that can automatically uncover underlying mathematical laws from observed data. In this work, we make one step towards building a bridge between algebraic structures and deep learning, and introduce \textbf{AIDN}, \textit{Algebraically-Informed Deep Networks}. \textbf{AIDN} is a deep learning algorithm to represent any finitely-presented algebraic object with a set of deep neural networks. The deep networks obtained via \textbf{AIDN} are \textit{algebraically-informed} in the sense that they satisfy the algebraic relations of the presentation of the algebraic structure that serves as the input to the algorithm. Our proposed network can robustly compute linear and non-linear representations of most finitely-presented algebraic structures such as groups, associative algebras, and Lie algebras. We evaluate our proposed approach and demonstrate its applicability to algebraic and geometric objects that are significant in low-dimensional topology. In particular, we study solutions for the Yang-Baxter equations and their applications on braid groups. Further, we study the representations of the Temperley-Lieb algebra. Finally, we show, using the Reshetikhin-Turaev construction, how our proposed deep learning approach can be utilized to construct new link invariants. We believe the proposed approach would tread a path toward a promising future research in deep learning applied to algebraic and geometric structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源