论文标题

使用深暹罗网络的差异变形式检测

Differential Morphed Face Detection Using Deep Siamese Networks

论文作者

Soleymani, Sobhan, Chaudhary, Baaria, Dabouei, Ali, Dawson, Jeremy, Nasrabadi, Nasser M.

论文摘要

尽管生物识别面部识别系统正在迅速成为安全应用程序的一部分,但这些系统仍然容易受到变形攻击的影响,在该攻击中,可以将面部参考图像验证为两个或更多独立的身份。在边境控制场景中,成功的变形攻击使两个或更多人可以使用相同的护照跨越边界。在本文中,我们提出了一个新型的差异变体攻击检测框架,使用深暹罗网络。据我们所知,这是第一部利用暹罗网络体系结构进行变形攻击检测的研究工作。我们使用两个不同的变形数据集(Visapp17和Morgan)将模型与其他经典和深度学习模型进行比较。我们使用欧几里得距离,特征差和支持向量机分类器以及功能串联和支持向量机分类器的三个决策框架和支持向量机分类器,探索了对比损失产生的嵌入空间。

Although biometric facial recognition systems are fast becoming part of security applications, these systems are still vulnerable to morphing attacks, in which a facial reference image can be verified as two or more separate identities. In border control scenarios, a successful morphing attack allows two or more people to use the same passport to cross borders. In this paper, we propose a novel differential morph attack detection framework using a deep Siamese network. To the best of our knowledge, this is the first research work that makes use of a Siamese network architecture for morph attack detection. We compare our model with other classical and deep learning models using two distinct morph datasets, VISAPP17 and MorGAN. We explore the embedding space generated by the contrastive loss using three decision making frameworks using Euclidean distance, feature difference and a support vector machine classifier, and feature concatenation and a support vector machine classifier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源