论文标题
量子Fisher信息矩阵的一般表达式,并具有离散量子成像的应用
General expressions for the quantum Fisher information matrix with applications to discrete quantum imaging
论文作者
论文摘要
量子Fisher信息矩阵是多参数量子估计理论中的中心对象。获得它的分析表达通常是具有挑战性的,因为大多数计算方法都依赖于密度矩阵的对角线化。在本文中,我们得出了量子Fisher信息矩阵的一般表达式,该信息矩阵绕过矩阵对角线化,并且不需要在正顺式状态下的操作员扩展。此外,我们可以解决任意等级的密度矩阵。此处介绍的方法可以大大简化分析计算,例如,当密度矩阵更自然地以非正交状态(例如相干状态)表示。我们的派生依赖于两个矩阵倒置,这些矩阵原则上即使密度矩阵不可对封闭形式不可对角线化,它们也可以在分析上进行评估。我们通过在离散量子成像的及时领域中得出新的结果来证明我们的方法的力量:不一致点源的位置和强度的估计。我们发现了两个具有不同强度的点源的完整估计问题以及具有三个点源的特定示例的分析表达式。我们预计我们的方法将成为量子计量学的标准。
The quantum Fisher information matrix is a central object in multiparameter quantum estimation theory. It is usually challenging to obtain analytical expressions for it because most calculation methods rely on the diagonalization of the density matrix. In this paper, we derive general expressions for the quantum Fisher information matrix which bypass matrix diagonalization and do not require the expansion of operators on an orthonormal set of states. Additionally, we can tackle density matrices of arbitrary rank. The methods presented here simplify analytical calculations considerably when, for example, the density matrix is more naturally expressed in terms of non-orthogonal states, such as coherent states. Our derivation relies on two matrix inverses which, in principle, can be evaluated analytically even when the density matrix is not diagonalizable in closed form. We demonstrate the power of our approach by deriving novel results in the timely field of discrete quantum imaging: the estimation of positions and intensities of incoherent point sources. We find analytical expressions for the full estimation problem of two point sources with different intensities, and for specific examples with three point sources. We expect that our method will become standard in quantum metrology.