论文标题
核心爆发物理学在黑洞中子星级合并的可观察性中的作用
The role of core-collapse physics in the observability of black-hole neutron-star mergers as multi-messenger sources
论文作者
论文摘要
最近的详细核心折叠模拟带来了对大型恒星的最终命运的新见解,这与常用的参数处方相反。在这项工作中,我们探讨了这些结果对融合黑洞(BH)的形成 - 中子星(NS)二进制文件的含义,例如候选事件GW190426_152155在GWTC-2中报道了。此外,我们研究了出生踢和NS半径对此类系统的合成以及与它们相关的潜在电磁对应物的影响。基于详细的核心差模拟的合成模型导致BH-NS系统的合并检测率提高($ \ sim 2.3 $ yr $^{ - 1} $),比“标准”参数规定的预测大5至10倍。这主要是由于直接崩溃的低质量BH形成,因此没有详细的模拟所偏爱的出生踢。详细的超新星发动机将产生电磁对应物的观察到的系统的比例,范围为$ 2 $ - $ 25 $%,具体取决于NS国家方程中的不确定性。值得注意的是,在大多数与电磁对应物的合并系统中,只要NS的半径为$ \ sillsim 12 \,\ mathrm {km} $,ns是首先出生的紧凑对象。此外,预测具有可忽略的纳塔尔踢的低质量BHS的核心崩溃模型增加了GW190426_152155样事件的检测率至$ \ sim 0.6 \,$ yr $ $^{ - 1} $;所有超新星发动机的电磁对应物$ \ leq 10 $%的相关概率。但是,增加直接折叠低质量BHS的产生也增加了二进制BHS的合成,从而过高地预测了其测得的局部合并密度速率。在所有情况下,基于详细的核心差模拟的模型都可以预测BH-NSS与二进制BHS合并速率密度的比率至少是其他处方的两倍。
Recent detailed 1D core-collapse simulations have brought new insights on the final fate of massive stars, which are in contrast to commonly used parametric prescriptions. In this work, we explore the implications of these results to the formation of coalescing black-hole (BH) - neutron-star (NS) binaries, such as the candidate event GW190426_152155 reported in GWTC-2. Furthermore, we investigate the effects of natal kicks and the NS's radius on the synthesis of such systems and potential electromagnetic counterparts linked to them. Synthetic models based on detailed core-collapse simulations result in an increased merger detection rate of BH-NS systems ($\sim 2.3$ yr$^{-1}$), 5 to 10 times larger than the predictions of "standard" parametric prescriptions. This is primarily due to the formation of low-mass BH via direct collapse, and hence no natal kicks, favored by the detailed simulations. The fraction of observed systems that will produce an electromagnetic counterpart, with the detailed supernova engine, ranges from $2$-$25$%, depending on uncertainties in the NS equation of state. Notably, in most merging systems with electromagnetic counterparts, the NS is the first-born compact object, as long as the NS's radius is $\lesssim 12\,\mathrm{km}$. Furthermore, core-collapse models that predict the formation of low-mass BHs with negligible natal kicks increase the detection rate of GW190426_152155-like events to $\sim 0.6 \, $yr$^{-1}$; with an associated probability of electromagnetic counterpart $\leq 10$% for all supernova engines. However, increasing the production of direct-collapse low-mass BHs also increases the synthesis of binary BHs, over-predicting their measured local merger density rate. In all cases, models based on detailed core-collapse simulation predict a ratio of BH-NSs to binary BHs merger rate density that is at least twice as high as other prescriptions.