论文标题
Borel的猜想和微薄的套装
Borel's conjecture and meager-additive sets
论文作者
论文摘要
我们证明,它与$ \ mathrm {ZFC} $相对一致,即每个强度的真实线的零子集都是微薄的,而存在不可数量的强度零集合(即Borel的猜想失败)。这回答了由于Bartoszyński和Judah引起的一个长期存在的问题。
We prove that it is relatively consistent with $\mathrm{ZFC}$ that every strong measure zero subset of the real line is meager-additive while there are uncountable strong measure zero sets (i.e., Borel's conjecture fails). This answers a long-standing question due to Bartoszyński and Judah.