论文标题
在光学晶格中自旋-1玻色子的超氟中流的稳定性
Stability of supercurrents in a superfluid phase of spin-1 bosons in an optical lattice
论文作者
论文摘要
我们研究了基于时间依赖性的Ginzburg-Landau(TDGL)方程,在光学晶格中研究了与抗磁相互作用的自旋1玻色子的集体模式和超流量。具体而言,我们检查了莫特绝缘阶段附近的超冲流在极相中的稳定性,甚至具有填充因子。求解线性化的TDGL方程,我们在极相中获得了无间隙的自旋态模式和间隙自旋波模式,由于$ s^2 $对称性在自旋空间中破坏了。超电流表现出由增长的集体模式引起的动态不稳定性。与二阶相变相反,质量电流的临界动量在一阶超氟莫特绝缘子(SF-MI)相变的相边界处有限。此外,在整个亚稳态的SF相中,临界动量仍然是有限的,并将亚稳态SF状态消失的相边界接近零。我们还研究了最近针对旋转气体的实验激励的自旋电流的稳定性。发现旋转电流的临界动量为零,其中自旋nematic模式会导致动态不稳定性。我们研究了旋转电流的零临界动量的起源,并发现它归因于以下事实:即使存在无限旋转电流,极性状态也会在能量上不稳定。我们讨论旋转电流的零临界动量对极性状态的稳定性的含义。
We study collective modes and superfluidity of spin-1 bosons with antiferromagnetic interactions in an optical lattice based on the time-dependent Ginzburg-Landau (TDGL) equation derived from the spin-1 Bose-Hubbard model. Specifically, we examine the stability of supercurrents in the polar phase in the vicinity of the Mott insulating phase with even filling factors. Solving the linearized TDGL equation, we obtain gapless spin-nematic modes and gapful spin-wave modes in the polar phase that arise due to the breaking of $S^2$ symmetry in spin space. Supercurrents exhibit dynamical instabilities induced by growing collective modes. In contrast to the second-order phase transition, the critical momentum of mass currents is finite at the phase boundary of the first-order superfluid-Mott insulator (SF-MI) phase transition. Furthermore, the critical momentum remains finite throughout the metastable SF phase and approaches zero towards the phase boundary, at which the metastable SF state disappears. We also study the stability of spin currents motivated by recent experiments for spinor gases. The critical momentum of spin currents is found to be zero, where a spin-nematic mode causes the dynamical instability. We investigate the origin of the zero critical momentum of spin currents and find it attributed to the fact that the polar state becomes energetically unstable even in the presence of an infinitesimal spin current. We discuss implications of the zero critical momentum of spin currents for the stability of the polar state.