论文标题
通过多输出高斯流程的LAI差距填充的光学和SAR时间序列
Fusing Optical and SAR time series for LAI gap filling with multioutput Gaussian processes
论文作者
论文摘要
卫星光学信息的可用性通常会因云的自然存在而阻碍,这对于许多应用可能是有问题的。农业领域的持续云可以掩盖作物生长的关键阶段,从而导致不可靠的收益预测。合成的孔径雷达(SAR)提供了全天候的图像,可以潜在地克服这一限制,但是鉴于其对不同表面特性的高敏感性,SAR和光学数据的融合仍然是一个开放的挑战。在这项工作中,我们建议使用多输出高斯流程(MOGP)回归,这是一种机器学习技术,可以自动学习多传感器时间序列之间的统计关系,以检测植被区域,以使Sar-optical Image之间的协同作用是有利可图的。为此,我们将Sentinel-1雷达植被指数(RVI)和Sentinel-2叶面积指数(LAI)时间序列序列在伊比利亚半岛西北部的研究区域上。通过对MOGP训练的模型的物理解释,我们使用与RVI共享的信息在阴云密布的时期展示了其估计的能力,该信息可以保证该解决方案始终与实际测量相关。结果证明了MOGP的优势,尤其是对于长度数据差距,基于光学的方法众所周知失败了。适用于整个植被覆盖的保留的一定图像的评估技术显示,MOGP预测改善了短期间隙的标准GP估计(R $^2 $ 74 \%\%\%\%\%\%\%,RMSE为0.4 vs 0.44 vs 0.44 $ [m^2m^{-2}] $,尤其是长时间的$ $ $^2 $ 33 vs,rmse(rmse),rmse,rmse,rmse,rmse,rmse,rmse vs 0.44 \%\%。 1.09 $ [m^2m^{ - 2}] $)。
The availability of satellite optical information is often hampered by the natural presence of clouds, which can be problematic for many applications. Persistent clouds over agricultural fields can mask key stages of crop growth, leading to unreliable yield predictions. Synthetic Aperture Radar (SAR) provides all-weather imagery which can potentially overcome this limitation, but given its high and distinct sensitivity to different surface properties, the fusion of SAR and optical data still remains an open challenge. In this work, we propose the use of Multi-Output Gaussian Process (MOGP) regression, a machine learning technique that learns automatically the statistical relationships among multisensor time series, to detect vegetated areas over which the synergy between SAR-optical imageries is profitable. For this purpose, we use the Sentinel-1 Radar Vegetation Index (RVI) and Sentinel-2 Leaf Area Index (LAI) time series over a study area in north west of the Iberian peninsula. Through a physical interpretation of MOGP trained models, we show its ability to provide estimations of LAI even over cloudy periods using the information shared with RVI, which guarantees the solution keeps always tied to real measurements. Results demonstrate the advantage of MOGP especially for long data gaps, where optical-based methods notoriously fail. The leave-one-image-out assessment technique applied to the whole vegetation cover shows MOGP predictions improve standard GP estimations over short-time gaps (R$^2$ of 74\% vs 68\%, RMSE of 0.4 vs 0.44 $[m^2m^{-2}]$) and especially over long-time gaps (R$^2$ of 33\% vs 12\%, RMSE of 0.5 vs 1.09 $[m^2m^{-2}]$).