论文标题
在Gerko强烈独立的模块上
On Gerko's Strongly Tor-independent Modules
论文作者
论文摘要
Gerko证明,如果Artinian Local Ring $(R,\ Mathfrak {M} _r)$具有一系列强烈的tor依赖性模块,则具有$ n $的长度,然后$ \ m athfrak {m} _r^n \ neq 0 $。这很容易概括到Cohen-Macaulay环。我们为非Cohen-Macaulay环提供了此结果的版本。
Gerko proves that if an artinian local ring $(R,\mathfrak{m}_R)$ possesses a sequence of strongly Tor-independent modules of length $n$, then $\mathfrak{m}_R^n\neq 0$. This generalizes readily to Cohen-Macaulay rings. We present a version of this result for non-Cohen-Macaulay rings.