论文标题
使用自我注意力网络的零透明喷气式党分配
Zero-Permutation Jet-Parton Assignment using a Self-Attention Network
论文作者
论文摘要
在高能量粒子物理事件中,找到与中间状态衰减相关的喷气机可以是有利的,例如,由顶部夸克(Top Quark)产生的三种喷头。通常,构建了一个与相关喷气机的质量相关的协调量,例如$χ^2 $,并通过优化此措施找到最佳的喷气组合。由于此过程遭受了与喷气机数量的组合爆炸量,因此仅使用$ n $最高$ p_t $ jets的排列数受到限制。自我发场块是用于神经机器翻译问题的神经网络单元,它可以突出单个迭代中任何数量的输入之间的关系,而无需排位。在本文中,我们介绍了喷气分配(SAJA)网络的自我注意力。 Saja可以在一个步骤中使用任何数量的喷气机来用于输入和输出JET-PARTON分配的概率。我们应用Saja查找完全hadronic $ t \ bar {t} $事件的Jet-Parton作业来评估性能。我们表明,Saja比基于可能性的方法取得更好的性能。
In high-energy particle physics events, it can be advantageous to find the jets associated with the decays of intermediate states, for example, the three jets produced by the hadronic decay of the top quark. Typically, a goodness-of-association measure, such as a $χ^2$ related to the mass of the associated jets, is constructed, and the best jet combination is found by optimizing this measure. As this process suffers from a combinatorial explosion with the number of jets, the number of permutations is limited by using only the $n$ highest $p_T$ jets. The self-attention block is a neural network unit used for the neural machine translation problem, which can highlight relationships between any number of inputs in a single iteration without permutations. In this paper, we introduce the Self-Attention for Jet Assignment (SaJa) network. SaJa can take any number of jets for input and outputs probabilities of jet-parton assignment for all jets in a single step. We apply SaJa to find jet-parton assignments of fully-hadronic $t\bar{t}$ events to evaluate the performance. We show that SaJa achieves better performance than a likelihood-based approach.