论文标题
衍生定价中量子优势的阈值
A Threshold for Quantum Advantage in Derivative Pricing
论文作者
论文摘要
我们在定价衍生品中有价值的量子优势所需的资源给出了上限。为此,我们使用可自动兑现和目标应计兑换衍生物(TARF)衍生品作为基准用例,为有用的量子定价提供了第一个完整的资源估计。我们发现已知方法中的阻碍挑战,并引入了一种避免它们的量子导数定价的新方法 - 重新参数化方法。该方法将预训练的变分路与容忍故障的量子计算相结合,以大大降低资源需求。我们发现我们检查的基准用例需要8K逻辑Qubits和5400万的T深度。我们估计量子优势将需要以一秒钟的顺序执行此程序。尽管此处给出的资源需求无法达到当前系统,但我们希望它们将为算法,实现和计划的硬件体系结构提供进一步改进的路线图。
We give an upper bound on the resources required for valuable quantum advantage in pricing derivatives. To do so, we give the first complete resource estimates for useful quantum derivative pricing, using autocallable and Target Accrual Redemption Forward (TARF) derivatives as benchmark use cases. We uncover blocking challenges in known approaches and introduce a new method for quantum derivative pricing - the re-parameterization method - that avoids them. This method combines pre-trained variational circuits with fault-tolerant quantum computing to dramatically reduce resource requirements. We find that the benchmark use cases we examine require 8k logical qubits and a T-depth of 54 million. We estimate that quantum advantage would require executing this program at the order of a second. While the resource requirements given here are out of reach of current systems, we hope they will provide a roadmap for further improvements in algorithms, implementations, and planned hardware architectures.