论文标题
Be Star Discs:由非零中央扭矩提供动力
Be star discs: powered by a non-zero central torque
论文作者
论文摘要
BE恒星是迅速旋转的B恒星,该恒星具有Balmer发射线,表明存在开普勒,旋转支撑的,旋转的气盘。当前的圆盘模型(称为“ DECORTION DISC”)使用通常应用于积聚盘的零扭矩内部边界条件,其'decretion'通过以大约2%的半径向内盘边界添加质量来建模。我们指出,在此模型中,需要将质量和能量添加到光盘中的速率令人难以置信。需要的是,椎间盘不仅具有质量来源,而且具有持续的角动量来源。我们认为,圆盘的演化可以通过在尼克松和普林格(2020)的非零扭矩内边界条件(2020)的情况下进行实际建模,该扭矩确定在边界处施加的扭矩作为所需的角动量磁通量的一部分,并在适当的限制下接近积聚和decretion盘。我们提供了支持论点,即圆盘材料的起源是恒星表面上的小规模磁性耀斑事件,当与快速旋转结合使用时,可以提供足够的质量形成,并且可以维持足够的角度动量,而开普勒式为星盘。我们讨论具有差异旋转的辐射恒星中这种小尺度磁场的起源。我们得出的结论是,恒星表面上的小尺度磁场可能能够提供必要的质量通量和圆盘内部区域上必要的时间依赖性扭矩,以驱动观察到的圆盘演化。
Be stars are rapidly rotating B stars with Balmer emission lines that indicate the presence of a Keplerian, rotationally supported, circumstellar gas disc. Current disc models, referred to as "decretion discs", make use of the zero torque inner boundary condition typically applied to accretion discs, with the 'decretion' modelled by adding mass to the disc at a radius of about two per cent larger than the inner disc boundary. We point out that, in this model, the rates at which mass and energy need to be added to the disc are implausibly large. What is required is that the disc has not only a source of mass but also a continuing source of angular momentum. We argue that the disc evolution may be more physically modelled by application of the non-zero torque inner boundary condition of Nixon & Pringle (2020), which determines the torque applied at the boundary as a fraction of the advected angular momentum flux there and approaches the accretion and decretion disc cases in the appropriate limits. We provide supporting arguments for the suggestion that the origin of the disc material is small-scale magnetic flaring events on the stellar surface, which, when combined with rapid rotation, can provide sufficient mass to form, and sufficient angular momentum to maintain, a Keplerian Be star disc. We discuss the origin of such small-scale magnetic fields in radiative stars with differential rotation. We conclude that small-scale magnetic fields on the stellar surface, may be able to provide the necessary mass flux and the necessary time-dependent torque on the disc inner regions to drive the observed disc evolution.