论文标题
强力重力镜头建模中非物理源重建的自动识别
Auto-identification of unphysical source reconstructions in strong gravitational lens modelling
论文作者
论文摘要
随着下一代调查的出现以及发现大量强力引力镜头系统的期望,正在为开发处理数据的自动化程序而投入很多努力。对于传统建模技术,强的星系 - 盖镜头系统的数量增加了几个数量级。尽管机器学习技术已大大提高了镜头建模的效率,但镜头质量谱的参数建模仍然是处理复杂镜头系统的重要工具。特别是,源重建方法对于应对高偏移源的不规则结构是必需的。在本文中,我们考虑了一个卷积神经网络(CNN),该神经网络分析了半分析方法的输出,该方法参数对镜片质量进行了模拟并线性地重建源表面亮度分布。我们显示了由于不正确的初始镜头模型而产生的非物理源重建,我们的CNN可以有效地捕获。此外,CNN预测可用于自动重新定位参数透镜模型,避免非物理源重建。经过对镜头Sérsic资源的重建培训的CNN准确地对相同类型的源重建进行了精确$ p> 0.99 $的分类,并回忆$ r> 0.99 $。当对更复杂的镜头HUDF源进行分类时,相同的CNN无需重新训练就可以实现$ p = 0.89 $和$ r = 0.89 $。使用CNN预测来重新定位镜头建模程序,我们在非物理源重建的发生率下降了69%。这种组合的CNN和参数建模方法可以大大改善镜头建模的自动化。
With the advent of next-generation surveys and the expectation of discovering huge numbers of strong gravitational lens systems, much effort is being invested into developing automated procedures for handling the data. The several orders of magnitude increase in the number of strong galaxy-galaxy lens systems is an insurmountable challenge for traditional modelling techniques. Whilst machine learning techniques have dramatically improved the efficiency of lens modelling, parametric modelling of the lens mass profile remains an important tool for dealing with complex lensing systems. In particular, source reconstruction methods are necessary to cope with the irregular structure of high-redshift sources. In this paper, we consider a Convolutional Neural Network (CNN) that analyses the outputs of semi-analytic methods which parametrically model the lens mass and linearly reconstruct the source surface brightness distribution. We show the unphysical source reconstructions that arise as a result of incorrectly initialised lens models can be effectively caught by our CNN. Furthermore, the CNN predictions can be used to automatically re-initialise the parametric lens model, avoiding unphysical source reconstructions. The CNN, trained on reconstructions of lensed Sérsic sources, accurately classifies source reconstructions of the same type with a precision $P > 0.99$ and recall $R > 0.99$. The same CNN, without re-training, achieves $P=0.89$ and $R=0.89$ when classifying source reconstructions of more complex lensed HUDF sources. Using the CNN predictions to re-initialise the lens modelling procedure, we achieve a 69 per cent decrease in the occurrence of unphysical source reconstructions. This combined CNN and parametric modelling approach can greatly improve the automation of lens modelling.