论文标题
在高斯流程模型中解开衍生物,不确定性和错误
Disentangling Derivatives, Uncertainty and Error in Gaussian Process Models
论文作者
论文摘要
高斯工艺(GPS)是一类内核方法,在地球科学应用中非常有用。它们被广泛使用,因为它们简单,灵活,并为非线性问题提供非常准确的估计,尤其是在参数检索中。 GPS的补充,配备了有用的属性:预测差异功能,可为预测提供置信区间。 GP公式通常假定训练和测试点中没有输入噪声,仅在观察结果中。但是,在地球观察问题中通常并非如此,因为通常可以对仪器误差进行准确评估。在本文中,我们展示了如何使用GP模型的导数来提供分析误差传播公式,并分析了预测差异和来自红外声音数据的温度预测问题中的传播误差项。
Gaussian Processes (GPs) are a class of kernel methods that have shown to be very useful in geoscience applications. They are widely used because they are simple, flexible and provide very accurate estimates for nonlinear problems, especially in parameter retrieval. An addition to a predictive mean function, GPs come equipped with a useful property: the predictive variance function which provides confidence intervals for the predictions. The GP formulation usually assumes that there is no input noise in the training and testing points, only in the observations. However, this is often not the case in Earth observation problems where an accurate assessment of the instrument error is usually available. In this paper, we showcase how the derivative of a GP model can be used to provide an analytical error propagation formulation and we analyze the predictive variance and the propagated error terms in a temperature prediction problem from infrared sounding data.