论文标题

在无序的局部基地蜂窝模型中,次延伸动力学和关键量子相关性从平衡中

Subdiffusive dynamics and critical quantum correlations in a disorder-free localized Kitaev honeycomb model out of equilibrium

论文作者

Zhu, Guo-Yi, Heyl, Markus

论文摘要

最近,无序的定位已成为均质晶格理论中终身性破坏的一种机制。在这项工作中,我们表明这种机制可能导致量子物质的非常规状态,因为缺乏热化升降会受到均衡统计物理施加的约束。我们在偏振磁场中研究了基塔夫蜂窝模型,这些模型受到完全极化的初始产物状态的量子淬灭,并由于无障碍定位而观察到了非ernervodic动力学。我们发现该系统表现出次球幂律纠缠的生长和量子相关扩散,否则通常与热化系统相关。在渐近稳态中,Kitaev模型即使在有限的能量密度下,也会形成体积法律纠缠和幂律衰减二聚体量子相关性。我们的工作阐明了无序的局部晶格量表理论的潜力,以在二维中实现量子状态,其特性超出了平衡环境中的可能性。

Disorder-free localization has recently emerged as a mechanism for ergodicity breaking in homogeneous lattice gauge theories. In this work we show that this mechanism can lead to unconventional states of quantum matter as the absence of thermalization lifts constraints imposed by equilibrium statistical physics. We study a Kitaev honeycomb model in a skew magnetic field subject to a quantum quench from a fully polarized initial product state and observe nonergodic dynamics as a consequence of disorder-free localization. We find that the system exhibits a subballistic power-law entanglement growth and quantum correlation spreading, which is otherwise typically associated with thermalizing systems. In the asymptotic steady state the Kitaev model develops volume-law entanglement and power-law decaying dimer quantum correlations even at a finite energy density. Our work sheds light onto the potential for disorder-free localized lattice gauge theories to realize quantum states in two dimensions with properties beyond what is possible in an equilibrium context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源