论文标题

最大化固定尺寸的最大独立集数量

Maximizing the number of maximal independent sets of a fixed size

论文作者

Song, Chunwei, Yao, Bowen

论文摘要

对于固定的图G,最大独立集是一个独立集,它不是任何其他独立集的适当子集。 P.Erdös,以及独立的J. W. Moon和L. Moser,以及R. E. Miller和D. E. Muller,确定了N顶点上图中图中最大独立集的最大数量,以及极端图。在本文中,我们最大程度地提高了所有订单n级图的固定大小的最大独立集数量,并确定极端图。我们的结果概括了经典结果。

For a fixed graph G, a maximal independent set is an independent set that is not a proper subset of any other independent set. P. Erdös, and independently, J. W. Moon and L. Moser, and R. E. Miller and D. E. Muller, determined the maximum number of maximal independent sets in a graph on n vertices, as well as the extremal graphs. In this paper we maximize the number of maximal independent sets of a fixed size for all graphs of order n and determine the extremal graphs. Our result generalizes the classical result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源