论文标题

循环脉冲腔增强作为极端动量转移原子干涉法的方法

Circulating pulse cavity enhancement as a method for extreme momentum transfer atom interferometry

论文作者

Nourshargh, R., Lellouch, S., Hedges, S., Langlois, M., Bongs, K., Holynski, M.

论文摘要

大规模原子干涉仪有望对中带(0.1-10 Hz)重力波的应变灵敏度,并将在寻找超光标量暗物质时探测一个新的参数空间。这些原子干涉仪需要在干涉仪臂之间的10^4 \ hbar K以上的动量分离,以达到目标灵敏度。迄今为止,高度高的光学强度和波前平坦要求限制了最大可实现的动量分裂。我们提出了一种使用循环的,空间分辨的脉冲和腔内频率调制的光腔增强原子干涉法的方案,以克服这些局限性并达到10^4 \ HBAR K动量分离。我们提出了适用于使用87SR中698 nm时钟过渡在1 km干涉仪中进行10^4 \ hbar k分裂的实验实现的参数,并描述了在87SR中在689 nm跨疗法线上运行的10 m级设备中的性能增强。尽管在技术上具有挑战性的实施,但激光和云需求仍在即将到来的基于冷原子的干涉​​仪的范围内。我们的方案满足了这些传感器的最具挑战性要求,并为下一代高灵敏度,大动量转移原子干涉仪铺平了道路。

Large scale atom interferometers promise unrivaled strain sensitivity to midband (0.1 - 10 Hz) gravitational waves, and will probe a new parameter space in the search for ultra-light scalar dark matter. These atom interferometers require a momentum separation above 10^4 \hbar k between interferometer arms in order to reach the target sensitivity. Prohibitively high optical intensity and wavefront flatness requirements have thus far limited the maximum achievable momentum splitting. We propose a scheme for optical cavity enhanced atom interferometry, using circulating, spatially resolved pulses, and intracavity frequency modulation to overcome these limitations and reach 10^4 \hbar k momentum separation. We present parameters suitable for the experimental realization of 10^4 \hbar k splitting in a 1 km interferometer using the 698 nm clock transition in 87Sr, and describe performance enhancements in 10 m scale devices operating on the 689 nm intercombination line in 87Sr. Although technically challenging to implement, the laser and cloud requirements are within the reach of upcoming cold-atom based interferometers. Our scheme satisfies the most challenging requirements of these sensors and paves the way for the next generation of high sensitivity, large momentum transfer atom interferometers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源