论文标题
循环脉冲腔增强作为极端动量转移原子干涉法的方法
Circulating pulse cavity enhancement as a method for extreme momentum transfer atom interferometry
论文作者
论文摘要
大规模原子干涉仪有望对中带(0.1-10 Hz)重力波的应变灵敏度,并将在寻找超光标量暗物质时探测一个新的参数空间。这些原子干涉仪需要在干涉仪臂之间的10^4 \ hbar K以上的动量分离,以达到目标灵敏度。迄今为止,高度高的光学强度和波前平坦要求限制了最大可实现的动量分裂。我们提出了一种使用循环的,空间分辨的脉冲和腔内频率调制的光腔增强原子干涉法的方案,以克服这些局限性并达到10^4 \ HBAR K动量分离。我们提出了适用于使用87SR中698 nm时钟过渡在1 km干涉仪中进行10^4 \ hbar k分裂的实验实现的参数,并描述了在87SR中在689 nm跨疗法线上运行的10 m级设备中的性能增强。尽管在技术上具有挑战性的实施,但激光和云需求仍在即将到来的基于冷原子的干涉仪的范围内。我们的方案满足了这些传感器的最具挑战性要求,并为下一代高灵敏度,大动量转移原子干涉仪铺平了道路。
Large scale atom interferometers promise unrivaled strain sensitivity to midband (0.1 - 10 Hz) gravitational waves, and will probe a new parameter space in the search for ultra-light scalar dark matter. These atom interferometers require a momentum separation above 10^4 \hbar k between interferometer arms in order to reach the target sensitivity. Prohibitively high optical intensity and wavefront flatness requirements have thus far limited the maximum achievable momentum splitting. We propose a scheme for optical cavity enhanced atom interferometry, using circulating, spatially resolved pulses, and intracavity frequency modulation to overcome these limitations and reach 10^4 \hbar k momentum separation. We present parameters suitable for the experimental realization of 10^4 \hbar k splitting in a 1 km interferometer using the 698 nm clock transition in 87Sr, and describe performance enhancements in 10 m scale devices operating on the 689 nm intercombination line in 87Sr. Although technically challenging to implement, the laser and cloud requirements are within the reach of upcoming cold-atom based interferometers. Our scheme satisfies the most challenging requirements of these sensors and paves the way for the next generation of high sensitivity, large momentum transfer atom interferometers.