论文标题

在三维弯曲表面附近评估的层电位的正交误差估计值

Quadrature error estimates for layer potentials evaluated near curved surfaces in three dimensions

论文作者

Klinteberg, Ludvig af, Sorgentone, Chiara, Tornberg, Anna-Karin

论文摘要

当评估点接近表面并且积分几乎是单数时,与常规正交规则相关的正规误差与常规正交规则相关的层势会迅速增加。需要进行错误估计来确定何时准确性不足,并且应使用更昂贵的特殊正交方法。 本文的最终结果是,当应用于评估r^3中平滑弯曲表面上定义的层势时,复合高斯 - legendre规则和全局梯形规则的正交误差估计值。这些估计值没有未知的系数,并且可以在表面离散化的情况下进行有效评估,从而调用局部的一维根找到程序。它们是从曲线上的积分开始的,使用涉及轮廓积分,残基微积分和分支切割的复杂分析。通过使参数平面复杂化,该理论也可以用于得出曲线在r^3中的估计值。然后将这些结果用于表面上积分估计值的推导。在此过程中,我们还获得了根据r^2中曲线评估的层电位的误差估计。此类估计值与局部的根发现程序进行评估,以前是针对复杂形式写的层势的复合高斯 - legendre规则的[4]。在这里进行了扩展,以提供高质势和梯形规则的层电位的复杂和真实公式的正交误差估计。 给出了数值示例以说明正交误差估计的性能。在许多情况下,曲线整合的估计值非常精确,R^3中曲面的估计值也足够精确,计算成本足够低,实际上是有用的。

The quadrature error associated with a regular quadrature rule for evaluation of a layer potential increases rapidly when the evaluation point approaches the surface and the integral becomes nearly singular. Error estimates are needed to determine when the accuracy is insufficient and a more costly special quadrature method should be utilized. The final result of this paper are such quadrature error estimates for the composite Gauss-Legendre rule and the global trapezoidal rule, when applied to evaluate layer potentials defined over smooth curved surfaces in R^3. The estimates have no unknown coefficients and can be efficiently evaluated given the discretization of the surface, invoking a local one-dimensional root-finding procedure. They are derived starting with integrals over curves, using complex analysis involving contour integrals, residue calculus and branch cuts. By complexifying the parameter plane, the theory can be used to derive estimates also for curves in in R^3. These results are then used in the derivation of the estimates for integrals over surfaces. In this procedure, we also obtain error estimates for layer potentials evaluated over curves in R^2. Such estimates combined with a local root-finding procedure for their evaluation were earlier derived for the composite Gauss-Legendre rule for layer potentials written on complex form [4]. This is here extended to provide quadrature error estimates for both complex and real formulations of layer potentials, both for the Gauss-Legendre and the trapezoidal rule. Numerical examples are given to illustrate the performance of the quadrature error estimates. The estimates for integration over curves are in many cases remarkably precise, and the estimates for curved surfaces in R^3 are also sufficiently precise, with sufficiently low computational cost, to be practically useful.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源