论文标题

无监督域适应性的双分类器确定性最大化

Bi-Classifier Determinacy Maximization for Unsupervised Domain Adaptation

论文作者

Li, Shuang, Lv, Fangrui, Xie, Binhui, Liu, Chi Harold, Liang, Jian, Qin, Chen

论文摘要

无监督的域适应性挑战了将知识从贴标签的源域转移到未标记的目标域的问题。最近,用双分类师的对抗性学习已被证明有效地将跨域分布关闭。先前的方法通常利用双分类器之间的分歧来学习可转移的表示形式,但是,他们经常忽略了目标域中的分类器确定性,这可能导致缺乏特征可区分性。在本文中,我们提出了一种简单而有效的方法,即双分类器确定性最大化(BCDM),以解决此问题。通过观察到目标样本不能总是被决策边界明显分离的观察,在拟议的BCDM中,我们设计了一种新颖的分类器确定性差异(CDD)度量,该指标将分类器的差异作为分类的差异,因为分类器的差异是不同目标预测的类别,并隐含地介绍了目标特征特征辨别力的约束。为此,BCDM可以通过鼓励目标预测输出保持一致和确定,同时以对抗性方式保留预测的多样性,从而产生歧视性表示。此外,CDD的属性以及BCDM概括结合的理论保证均已详细阐述。广泛的实验表明,BCDM与现有的最新域适应方法进行了有利的比较。

Unsupervised domain adaptation challenges the problem of transferring knowledge from a well-labelled source domain to an unlabelled target domain. Recently,adversarial learning with bi-classifier has been proven effective in pushing cross-domain distributions close. Prior approaches typically leverage the disagreement between bi-classifier to learn transferable representations, however, they often neglect the classifier determinacy in the target domain, which could result in a lack of feature discriminability. In this paper, we present a simple yet effective method, namely Bi-Classifier Determinacy Maximization(BCDM), to tackle this problem. Motivated by the observation that target samples cannot always be separated distinctly by the decision boundary, here in the proposed BCDM, we design a novel classifier determinacy disparity (CDD) metric, which formulates classifier discrepancy as the class relevance of distinct target predictions and implicitly introduces constraint on the target feature discriminability. To this end, the BCDM can generate discriminative representations by encouraging target predictive outputs to be consistent and determined, meanwhile, preserve the diversity of predictions in an adversarial manner. Furthermore, the properties of CDD as well as the theoretical guarantees of BCDM's generalization bound are both elaborated. Extensive experiments show that BCDM compares favorably against the existing state-of-the-art domain adaptation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源