论文标题
深贝叶斯局部晶体学
Deep Bayesian Local Crystallography
论文作者
论文摘要
高分辨率电子和扫描探针显微镜成像的出现打开了闸门,以获取散装材料,2D材料和表面的原子解析图像。大量数据包含有关材料结构,结构扭曲和物理功能的大量信息。利用有关局部物理现象的知识,需要开发数学框架以提取相关信息。然而,对原子解析的图像的分析通常是基于宏观物理学概念的适应,尤其是转化和点组对称性和对称性降低现象。在这里,我们使用贝叶斯框架探索了原子解决数据中结构单元和对称性的自下而上的定义。我们证明了使用简单的玩具模型对贝叶斯对称性的定义的必要性,并证明了如何使用贝叶斯环境中的深度学习网络将该定义扩展到实验数据,即旋转不变的变性自动编码器。
The advent of high-resolution electron and scanning probe microscopy imaging has opened the floodgates for acquiring atomically resolved images of bulk materials, 2D materials, and surfaces. This plethora of data contains an immense volume of information on materials structures, structural distortions, and physical functionalities. Harnessing this knowledge regarding local physical phenomena necessitates the development of the mathematical frameworks for extraction of relevant information. However, the analysis of atomically resolved images is often based on the adaptation of concepts from macroscopic physics, notably translational and point group symmetries and symmetry lowering phenomena. Here, we explore the bottom-up definition of structural units and symmetry in atomically resolved data using a Bayesian framework. We demonstrate the need for a Bayesian definition of symmetry using a simple toy model and demonstrate how this definition can be extended to the experimental data using deep learning networks in a Bayesian setting, namely rotationally invariant variational autoencoders.