论文标题
量子自旋链中的假胶泡壁的碰撞
Collisions of false-vacuum bubble walls in a quantum spin chain
论文作者
论文摘要
我们使用非扰动方法模拟了在临界点附近的量子自旋链中的小气泡的实时动力学,其中相对论(1+1) - 维量子量子场理论描述了低能物理学。我们认为墙壁是扭结和抗京链粒子激发的气泡,因此墙壁碰撞是扭结的散射事件。为了在存在强相关性的情况下构建这些气泡,我们将最近提出的矩阵乘积状态(MPS)ANSATZ扩展到准粒子波袋中。我们模拟在无限链中嵌入约1000次旋转的窗口中的动力学,其能量的大约是质量间隙的大约5倍。通过适当地选择波袋宽度和气泡尺寸,我们避免了强烈的晶格效应,并观察到相对论的扭结碰撞。我们使用MPS Quasiparticle Ansatz来检测散射结果。 (i)在Ising模型中,具有横向和纵向场,尽管有不整合性,我们仍未观察到粒子的产生(在此模型中支持了最近对非热量状态的观察结果)。 (ii)开启额外的相互作用,我们看到了限制和无限制的粒子对的产生。我们表征了产生的纠缠量是能量和时间的函数,并得出结论,我们的经典模拟方法最终将随着这些方法的增加而失败。我们预计,1+1维度中的扭结 - 安替克克散射将是未来量子计算机和模拟量子模拟器的有启发性的基准问题。
We simulate, using nonperturbative methods, the real-time dynamics of small bubbles of "false vacuum" in a quantum spin chain near criticality, where the low-energy physics is described by a relativistic (1+1)-dimensional quantum field theory. We consider bubbles whose walls are kink and antikink quasiparticle excitations, so that wall collisions are kink-antikink scattering events. To construct these bubbles in the presence of strong correlations, we extend a recently proposed matrix product state (MPS) ansatz for quasiparticle wavepackets. We simulate dynamics within a window of about 1000 spins embedded in an infinite chain at energies of up to about 5 times the mass gap. By choosing the wavepacket width and the bubble size appropriately, we avoid strong lattice effects and observe relativistic kink-antikink collisions. We use the MPS quasiparticle ansatz to detect scattering outcomes. (i) In the Ising model, with transverse and longitudinal fields, we do not observe particle production despite nonintegrability (supporting recent observations of nonthermalizing states in this model). (ii) Switching on an additional interaction, we see production of confined and unconfined particle pairs. We characterize the amount of entanglement generated as a function of energy and time and conclude that our classical simulation methods will ultimately fail as these increase. We anticipate that kink-antikink scattering in 1+1 dimensions will be an instructive benchmark problem for future quantum computers and analog quantum simulators.