论文标题

从立体声图像中学习无碰撞空间检测:同型矩阵带来更好的数据增强

Learning Collision-Free Space Detection from Stereo Images: Homography Matrix Brings Better Data Augmentation

论文作者

Fan, Rui, Wang, Hengli, Cai, Peide, Wu, Jin, Bocus, Mohammud Junaid, Qiao, Lei, Liu, Ming

论文摘要

无碰撞空间检测是自动驾驶感知的关键组成部分。最先进的算法通常基于监督学习。这种方法的性能始终取决于标记的培训数据的质量和数量。此外,仅使用少量训练样本训练深卷卷神经网络(DCNN)仍然是一个开放的挑战。因此,本文主要探讨了一种有效的培训数据增强方法,该方法可用于提高整体DCNN性能,当时可以从不同的视图中捕获其他图像。由于两个从不同视图捕获的图像之间的无碰撞空间的像素(通常被视为平面表面)可以通过同型矩阵相关联,因此目标图像的场景可以转换为参考视图。这提供了一种简单但有效的方法,可以从其他多视图图像中生成培训数据。在三个数据集上使用六个最先进的语义分割DCNN进行的广泛实验结果证明了我们提出的培训数据增强算法的有效性,以增强无碰撞空间检测性能。当在Kitti Road Benchmark上进行验证时,我们的方法为基于立体视觉的无碰撞空间检测提供了最佳结果。

Collision-free space detection is a critical component of autonomous vehicle perception. The state-of-the-art algorithms are typically based on supervised learning. The performance of such approaches is always dependent on the quality and amount of labeled training data. Additionally, it remains an open challenge to train deep convolutional neural networks (DCNNs) using only a small quantity of training samples. Therefore, this paper mainly explores an effective training data augmentation approach that can be employed to improve the overall DCNN performance, when additional images captured from different views are available. Due to the fact that the pixels of the collision-free space (generally regarded as a planar surface) between two images captured from different views can be associated by a homography matrix, the scenario of the target image can be transformed into the reference view. This provides a simple but effective way of generating training data from additional multi-view images. Extensive experimental results, conducted with six state-of-the-art semantic segmentation DCNNs on three datasets, demonstrate the effectiveness of our proposed training data augmentation algorithm for enhancing collision-free space detection performance. When validated on the KITTI road benchmark, our approach provides the best results for stereo vision-based collision-free space detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源