论文标题

Lorentz空间II中具有逆平方电位的Schrödinger热半群的衰减估计值II

Decay estimates for Schrödinger heat semigroup with inverse square potential in Lorentz spaces II

论文作者

Ishige, Kazuhiro, Tateishi, Yujiro

论文摘要

令$ h:= - δ+v $是$ l^2({\ bf r}^n)$上的非负Schrödinger运算符,其中$ n \ ge 2 $和$ v $是径向对称的倒数平方电位。令$ \ | \ nabla^αe^{ - th} \ | _ {(l^{p,σ} \ to lorentz space $ l^nabla^a^{ - to p, $ l^{q,θ}({\ bf r}^n)$,其中$α\ in \ {0,1,2,\ dots \} $。我们建立了$ \ | \ | \ nabla^αe^{ - th} \ | _ {(l^{p,σ} \ to l^{q,θ})} $的上层和下衰减估计值和研究敏锐的衰减估计值$ \ | \ | \ | \ | \ nabla^αe^al^{ - l^{q,θ})} $。此外,我们从$ \ | \ | \ nabla^αe^a^{ - th} \ | _ {(l^{p,σ} \ to l^{q,θ}}} $的衰减中表征了拉普拉斯操作员$-Δ$。

Let $H:=-Δ+V$ be a nonnegative Schrödinger operator on $L^2({\bf R}^N)$, where $N\ge 2$ and $V$ is a radially symmetric inverse square potential. Let $\|\nabla^αe^{-tH}\|_{(L^{p,σ}\to L^{q,θ})}$ be the operator norm of $\nabla^αe^{-tH}$ from the Lorentz space $L^{p,σ}({\bf R}^N)$ to $L^{q,θ}({\bf R}^N)$, where $α\in\{0,1,2,\dots\}$. We establish both of upper and lower decay estimates of $\|\nabla^αe^{-tH}\|_{(L^{p,σ}\to L^{q,θ})}$ and study sharp decay estimates of $\|\nabla^αe^{-tH}\|_{(L^{p,σ}\to L^{q,θ})}$. Furthermore, we characterize the Laplace operator $-Δ$ from the view point of the decay of $\|\nabla^αe^{-tH}\|_{(L^{p,σ}\to L^{q,θ})}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源