论文标题
具有生成对抗网络的天文图像中的异常检测
Anomaly Detection in Astronomical Images with Generative Adversarial Networks
论文作者
论文摘要
我们在夏威夷的Subaru望远镜上使用Wasserstein生成对抗网络(WGAN)提出了一种异常检测方法。对整个样本进行了训练,并学会生成遵循训练数据分布的现实HSC样图像。我们识别出在发电机潜在空间中代表性不佳的图像,并且歧视旗的效果不太现实。因此,这些相对于其余数据是异常的。我们提出了一种基于卷积自动编码器(CAE)来表征这些异常的新方法,以降低真实和WGAN重建图像之间残差差异的维度。我们从近百万个对象样本中构造了一个〜9,000个高度异常图像的子样本,并进一步识别其中的有趣异常。这些包括星系合并,潮汐特征和极端的星系星系。在大数据天体物理学时代,提出的方法可以提高无监督的发现。
We present an anomaly detection method using Wasserstein generative adversarial networks (WGANs) on optical galaxy images from the wide-field survey conducted with the Hyper Suprime-Cam (HSC) on the Subaru Telescope in Hawai'i. The WGAN is trained on the entire sample, and learns to generate realistic HSC-like images that follow the distribution of the training data. We identify images which are less well-represented in the generator's latent space, and which the discriminator flags as less realistic; these are thus anomalous with respect to the rest of the data. We propose a new approach to characterize these anomalies based on a convolutional autoencoder (CAE) to reduce the dimensionality of the residual differences between the real and WGAN-reconstructed images. We construct a subsample of ~9,000 highly anomalous images from our nearly million object sample, and further identify interesting anomalies within these; these include galaxy mergers, tidal features, and extreme star-forming galaxies. The proposed approach could boost unsupervised discovery in the era of big data astrophysics.