论文标题

通过特征分离和对齐方式域自适应对象检测

Domain Adaptive Object Detection via Feature Separation and Alignment

论文作者

Liang, Chengyang, Zhao, Zixiang, Liu, Junmin, Zhang, Jiangshe

论文摘要

最近,基于对抗性的域自适应对象检测(DAOD)方法已迅速开发。但是,有两个问题需要紧急解决。首先,许多方法仅通过对齐源和目标域之间的所有功能来减少分布变化,同时忽略每个域的私人信息。其次,daod应该考虑图像中现有区域的对象上的特征对齐。但是区域建议和背景噪声的冗余可以降低域的可转移性。因此,我们建立了一个特征分离和对齐网络(FSANET),该网络由灰度特征分离(GSFS)模块,局部 - 全球特征对齐(LGFA)模块和区域固定级别对齐(RILA)模块组成。 GSFS模块分解了分散/共享信息,该信息无用/可用于通过双流框架检测,专注于对象的内在特征并解决第一个问题。然后,LGFA和RILA模块减少了多级特征的分布偏移。值得注意的是,规模空间过滤被利用以实现对要对齐的区域的自适应搜索,并且在每个区域中的实例级特征进行了完善,以减少第二期中提到的冗余和噪声。多个基准数据集上的各种实验证明,我们的FSANET在目标域检测上取得更好的性能并超过最新方法。

Recently, adversarial-based domain adaptive object detection (DAOD) methods have been developed rapidly. However, there are two issues that need to be resolved urgently. Firstly, numerous methods reduce the distributional shifts only by aligning all the feature between the source and target domain, while ignoring the private information of each domain. Secondly, DAOD should consider the feature alignment on object existing regions in images. But redundancy of the region proposals and background noise could reduce the domain transferability. Therefore, we establish a Feature Separation and Alignment Network (FSANet) which consists of a gray-scale feature separation (GSFS) module, a local-global feature alignment (LGFA) module and a region-instance-level alignment (RILA) module. The GSFS module decomposes the distractive/shared information which is useless/useful for detection by a dual-stream framework, to focus on intrinsic feature of objects and resolve the first issue. Then, LGFA and RILA modules reduce the distributional shifts of the multi-level features. Notably, scale-space filtering is exploited to implement adaptive searching for regions to be aligned, and instance-level features in each region are refined to reduce redundancy and noise mentioned in the second issue. Various experiments on multiple benchmark datasets prove that our FSANet achieves better performance on the target domain detection and surpasses the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源