论文标题

体现强化学习的层次结构原理:评论

Hierarchical principles of embodied reinforcement learning: A review

论文作者

Eppe, Manfred, Gumbsch, Christian, Kerzel, Matthias, Nguyen, Phuong D. H., Butz, Martin V., Wermter, Stefan

论文摘要

认知心理学和相关学科已经确定了几种关键机制,使智能生物学药物能够学会解决复杂的问题。存在迫切的证据表明,这些物种中能够解决问题技能的认知机制以等级的心理表征为基础。在为人造代理和机器人提供基于学习的问题解决能力的最有希望的计算方法之一是分层增强学习。但是,到目前为止,现有的计算方法尚未能够为人工代理提供与智能动物相媲美的解决问题的能力,包括人类和非人类灵长类动物,乌鸦或章鱼。在这里,我们首先调查了认知心理学和相关学科中的文献,发现许多重要的心理机制涉及组成抽象,好奇心和正向模型。然后,我们将这些见解与当代分层增强学习方法联系起来,并确定实现这些机制的关键机器智能方法。作为我们的主要结果,我们表明所有重要的认知机制都是在孤立的计算体系结构中独立实施的,并且缺乏适当整合它们的方法。我们预计我们的结果将指导更复杂的认知启发性层次结构方法的发展,以便未来的人工代理在智能动物水平上实现解决问题的表现。

Cognitive Psychology and related disciplines have identified several critical mechanisms that enable intelligent biological agents to learn to solve complex problems. There exists pressing evidence that the cognitive mechanisms that enable problem-solving skills in these species build on hierarchical mental representations. Among the most promising computational approaches to provide comparable learning-based problem-solving abilities for artificial agents and robots is hierarchical reinforcement learning. However, so far the existing computational approaches have not been able to equip artificial agents with problem-solving abilities that are comparable to intelligent animals, including human and non-human primates, crows, or octopuses. Here, we first survey the literature in Cognitive Psychology, and related disciplines, and find that many important mental mechanisms involve compositional abstraction, curiosity, and forward models. We then relate these insights with contemporary hierarchical reinforcement learning methods, and identify the key machine intelligence approaches that realise these mechanisms. As our main result, we show that all important cognitive mechanisms have been implemented independently in isolated computational architectures, and there is simply a lack of approaches that integrate them appropriately. We expect our results to guide the development of more sophisticated cognitively inspired hierarchical methods, so that future artificial agents achieve a problem-solving performance on the level of intelligent animals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源