论文标题
云检测机学习算法的proba-v
Cloud detection machine learning algorithms for PROBA-V
论文作者
论文摘要
本文介绍了Proba-V的云检测算法的开发和实施。对于广泛的遥感应用程序而言,卫星场景中云的准确检测是一个关键问题。没有准确的云掩蔽,未发现的云是海洋和土地覆盖生物物理参数检索中最重要的错误来源之一。本文介绍的算法的目的是准确地检测云,每像素为云标志提供。为此,该方法使用统计机器学习技术利用ProbA-V的信息来识别Proba-V产品中存在的云。使用大量的真实ProbA-V图像成功说明了所提出的方法的有效性。
This paper presents the development and implementation of a cloud detection algorithm for Proba-V. Accurate and automatic detection of clouds in satellite scenes is a key issue for a wide range of remote sensing applications. With no accurate cloud masking, undetected clouds are one of the most significant sources of error in both sea and land cover biophysical parameter retrieval. The objective of the algorithms presented in this paper is to detect clouds accurately providing a cloud flag per pixel. For this purpose, the method exploits the information of Proba-V using statistical machine learning techniques to identify the clouds present in Proba-V products. The effectiveness of the proposed method is successfully illustrated using a large number of real Proba-V images.