论文标题

零计数和固定高斯过程的节点长度的估计过度拥挤的估计值

Overcrowding estimates for zero count and nodal length of stationary Gaussian processes

论文作者

Priya, Lakshmi

论文摘要

假设在$ \ mathbb {r} $(或$ {\ mathbb {r}}^2 $)上采取某些条件,以$ \ mathbb {r} $(或$ \ mathbb {r} $)进行的某些条件,我们表明,事件的可能性是,它们在间隔中的零计数(在平方域中,nodal nodal nodal nodal in $ n $ n $ n $ n Ignession toce of n $ n ocival of n $ nige contery($ n $ n)均大于$ n $ nike counter(nign)。该方形域中的节点长度在$ n $中成倍小。

Assuming certain conditions on the spectral measures of centered stationary Gaussian processes on $\mathbb{R}$ (or ${\mathbb{R}}^2$), we show that the probability of the event that their zero count in an interval (resp., nodal length in a square domain) is larger than $n$, where $n$ is much larger than the expected value of the zero count in that interval (resp., nodal length in that square domain), is exponentially small in $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源