论文标题
对非差异通信渠道的自动编码器的无梯度培训
Gradient-free training of autoencoders for non-differentiable communication channels
论文作者
论文摘要
使用后传播算法对自动编码器进行培训对于非差异通道模型或无法计算梯度的实验环境而言是具有挑战性的。在本文中,我们研究了一种基于立方体卡尔曼过滤器的无梯度训练方法。为了在数值上验证该方法,使用自动编码器在可区分的通信通道上执行几何星座,显示与后传播算法相同的性能。进一步研究是在一个非差异通信通道上进行的,该通道包括:激光相噪声,加性白色高斯噪声和基于盲相搜索的相位噪声补偿。我们的结果表明,可以使用所提出的训练方法成功优化自动编码器,以相对于标准星座方案(例如正交振幅调制)和迭代性极性调制,以实现对剩余相位噪声的更好鲁棒性。
Training of autoencoders using the back-propagation algorithm is challenging for non-differential channel models or in an experimental environment where gradients cannot be computed. In this paper, we study a gradient-free training method based on the cubature Kalman filter. To numerically validate the method, the autoencoder is employed to perform geometric constellation shaping on differentiable communication channels, showing the same performance as the back-propagation algorithm. Further investigation is done on a non-differentiable communication channel that includes: laser phase noise, additive white Gaussian noise and blind phase search-based phase noise compensation. Our results indicate that the autoencoder can be successfully optimized using the proposed training method to achieve better robustness to residual phase noise with respect to standard constellation schemes such as Quadrature Amplitude Modulation and Iterative Polar Modulation for the considered conditions.