论文标题
非高斯颗粒密度的尖端,用于扩散扩散模型
Cusp of non-Gaussian density of particles for a diffusing diffusivity model
论文作者
论文摘要
我们研究了一个两个状态``跳跃扩散'模型,用于在两个不同的扩散常数之间交替交替,$ d _ {+}> d _ { - } $,在两个状态下的分布相当一般的状态中随机等待时间。在长时间测量时间的限制下,以有效的扩散系数为高斯行为。我们表明,对于平衡初始条件以及扩散系数的限制$ d _- \ to0 $时,短时间行为会导致尖端,即非分析行为,即在位移$ p(x,t)$的分布中,$ x \ x \ x \ x \ x \ x \ thelemrightarrow 0 $。从视觉上看,这种尖或帐篷状的形状类似于在无序环境中(例如玻璃系统和细胞内培养基)中散射颗粒的许多实验中发现的相似行为。该一般结果仅取决于模型不同状态处的等待时间的有限平均值。长时间限制的高斯统计数据是由于在状态中的暂时职业分数分布到$δ$ function中的暂时职业分数的分布而达到的。相同数量的短时间行为会收敛到均匀分布,从而导致$ p(x,t)$中的非分析性。我们演示了超级统计框架是零订单的短时间扩展为$ p(x,t)$,在过渡次数中,不会产生像尖头一样的形状。后者被认为是田间实验的关键特征,在扰动理论中首次纠正。
We study a two state ``jumping diffusivity'' model for a Brownian process alternating between two different diffusion constants, $D_{+}>D_{-}$, with random waiting times in both states whose distribution is rather general. In the limit of long measurement times Gaussian behavior with an effective diffusion coefficient is recovered. We show that for equilibrium initial conditions and when the limit of the diffusion coefficient $D_-\to0$ is taken, the short time behavior leads to a cusp, namely a non - analytical behavior, in the distribution of the displacements $P(x,t)$ for $x\longrightarrow 0$. Visually this cusp, or tent-like shape, resembles similar behavior found in many experiments of diffusing particles in disordered environments, such as glassy systems and intracellular media. This general result depends only on the existence of finite mean values of the waiting times at the different states of the model. Gaussian statistics in the long time limit is achieved due to ergodicity and convergence of the distribution of the temporal occupation fraction in state $D_{+}$ to a $δ$-function. The short time behavior of the same quantity converges to a uniform distribution, which leads to the non - analyticity in $P(x,t)$. We demonstrate how super - statistical framework is a zeroth order short time expansion of $P(x,t)$, in the number of transitions, that does not yield the cusp like shape. The latter, considered as the key feature of experiments in the field, is found with the first correction in perturbation theory.