论文标题
学习成分稀疏的高斯工艺,先前收缩
Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior
论文作者
论文摘要
选择一组合适的内核函数是学习高斯过程(GP)模型的重要问题,因为每个内核结构都具有不同的模型复杂性和数据适应性。最近,自动内核组成方法不仅可以通过基于搜索的方法提供准确的预测,还提供了有吸引力的解释性。但是,现有方法遭受了缓慢的内核组成学习。为了解决大型数据,我们提出了一个新的稀疏的GPS,MultiSVGP的稀疏近似后验,该后验是由与组成核中与单个添加剂相关的诱导点组构建的。我们证明,鉴于经验观察,这种近似为学习组成内核提供了更好的拟合。与传统的稀疏GP相比,我们还提供理论上的错误限制。与基于搜索的方法相反,我们提出了一种新颖的概率算法,可以通过Morseshoe Prior处理内核选择中的稀疏性来学习内核组成。我们证明,我们的模型可以捕获时间序列的特征,并在计算时间大大减少,并且在现实世界数据集上具有竞争性回归性能。
Choosing a proper set of kernel functions is an important problem in learning Gaussian Process (GP) models since each kernel structure has different model complexity and data fitness. Recently, automatic kernel composition methods provide not only accurate prediction but also attractive interpretability through search-based methods. However, existing methods suffer from slow kernel composition learning. To tackle large-scaled data, we propose a new sparse approximate posterior for GPs, MultiSVGP, constructed from groups of inducing points associated with individual additive kernels in compositional kernels. We demonstrate that this approximation provides a better fit to learn compositional kernels given empirical observations. We also provide theoretically justification on error bound when compared to the traditional sparse GP. In contrast to the search-based approach, we present a novel probabilistic algorithm to learn a kernel composition by handling the sparsity in the kernel selection with Horseshoe prior. We demonstrate that our model can capture characteristics of time series with significant reductions in computational time and have competitive regression performance on real-world data sets.