论文标题
使用正则化神经网络的灵活的非参数建模
Flexible, Non-parametric Modeling Using Regularized Neural Networks
论文作者
论文摘要
非参数添加剂模型能够以灵活但可解释的方式捕获复杂的数据依赖性。但是,选择添加剂组件的格式通常需要非平凡的数据探索。在这里,作为替代方案,我们提出了一个单层层神经网络Prada-net,接受了近端梯度下降和自适应套索训练。 PRADA-NET会自动调整神经网络的大小和体系结构,以反映数据的复杂性和结构。 PRADA-NET获得的紧凑网络可以转换为加性模型组件,使其适用于使用自动模型选择的非参数统计建模。我们在模拟数据上演示了PRADA-NET,其中wecompare prada-net对神经网络的其他基于LASSO的正则化方法的测试错误性能,可变重要性和可变子集识别属性。我们还将prada-net应用于大型英国黑烟数据集,以证明如何使用Prada-net用空间和时间成分来对复杂和异质数据进行建模。与经典的统计非参数方法相反,PRADA-NET不需要初步建模来选择添加剂组件的功能形式,但仍会导致可解释的模型表示。
Non-parametric, additive models are able to capture complex data dependencies in a flexible, yet interpretable way. However, choosing the format of the additive components often requires non-trivial data exploration. Here, as an alternative, we propose PrAda-net, a one-hidden-layer neural network, trained with proximal gradient descent and adaptive lasso. PrAda-net automatically adjusts the size and architecture of the neural network to reflect the complexity and structure of the data. The compact network obtained by PrAda-net can be translated to additive model components, making it suitable for non-parametric statistical modelling with automatic model selection. We demonstrate PrAda-net on simulated data, where wecompare the test error performance, variable importance and variable subset identification properties of PrAda-net to other lasso-based regularization approaches for neural networks. We also apply PrAda-net to the massive U.K. black smoke data set, to demonstrate how PrAda-net can be used to model complex and heterogeneous data with spatial and temporal components. In contrast to classical, statistical non-parametric approaches, PrAda-net requires no preliminary modeling to select the functional forms of the additive components, yet still results in an interpretable model representation.