论文标题

个性化的自适应元学习,用于冷启动用户偏好预测

Personalized Adaptive Meta Learning for Cold-start User Preference Prediction

论文作者

Yu, Runsheng, Gong, Yu, He, Xu, An, Bo, Zhu, Yu, Liu, Qingwen, Ou, Wenwu

论文摘要

个性化用户偏好预测中的一个普遍挑战是冷启动问题。由于缺乏用户项目的交互,直接从新用户的日志数据中学习会导致严重的过度拟合问题。最近,许多现有的研究将冷启动的个性化偏好预测视为几个学习问题,每个用户是任务,推荐的项目是类,并且利用基于梯度的元学习方法(MAML)来应对这一挑战。但是,在实际应用程序中,用户不是均匀分发的(即,不同的用户可能具有不同的浏览历史记录,推荐项目和用户配置文件。我们定义了主要用户,因为这些用户的用户与大量用户共享相似的用户,而其他用户是未成年人的用户),现有的MAML方法往往适合主要用户,并且不适合主要用户。为了解决这个寒冷的任务跨越拟合问题,我们提出了一种新型的个性化自适应元学习方法,以三个关键贡献来考虑专业和未成年人的次要用户:1)我们是第一个提出一种个性化的自适应学习率元学习率,以通过专注于专业用户和未成年人来提高MAML的性能。 2)为每个用户提供更好的个性化学习率,我们引入了一种基于相似性的方法,以找到相似的用户作为参考和基于树的方法,以存储用户的功能以进行快速搜索。 3)为了减少内存使用量,我们设计了一个内存不可知的正规器,以进一步将空间复杂性降低到恒定,同时保持性能。关于Movielens,BookCrossing和Real-World生产数据集的实验表明,对于未成年人和主要用户,我们的方法均超过了最先进的方法。

A common challenge in personalized user preference prediction is the cold-start problem. Due to the lack of user-item interactions, directly learning from the new users' log data causes serious over-fitting problem. Recently, many existing studies regard the cold-start personalized preference prediction as a few-shot learning problem, where each user is the task and recommended items are the classes, and the gradient-based meta learning method (MAML) is leveraged to address this challenge. However, in real-world application, the users are not uniformly distributed (i.e., different users may have different browsing history, recommended items, and user profiles. We define the major users as the users in the groups with large numbers of users sharing similar user information, and other users are the minor users), existing MAML approaches tend to fit the major users and ignore the minor users. To address this cold-start task-overfitting problem, we propose a novel personalized adaptive meta learning approach to consider both the major and the minor users with three key contributions: 1) We are the first to present a personalized adaptive learning rate meta-learning approach to improve the performance of MAML by focusing on both the major and minor users. 2) To provide better personalized learning rates for each user, we introduce a similarity-based method to find similar users as a reference and a tree-based method to store users' features for fast search. 3) To reduce the memory usage, we design a memory agnostic regularizer to further reduce the space complexity to constant while maintain the performance. Experiments on MovieLens, BookCrossing, and real-world production datasets reveal that our method outperforms the state-of-the-art methods dramatically for both the minor and major users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源