论文标题

使用胸部CT进行有效且可视化的卷积神经网络,用于共同19

Efficient and Visualizable Convolutional Neural Networks for COVID-19 Classification Using Chest CT

论文作者

Garg, Aksh, Salehi, Sana, La Rocca, Marianna, Garner, Rachael, Duncan, Dominique

论文摘要

随着COVID-19病例的迅速增长,深度学习已成为一种有希望的诊断技术。但是,确定最准确的模型来表征COVID-19患者的表征是具有挑战性的,因为比较不同类型的数据和获取过程获得的结果是非平凡的。在本文中,我们设计,评估和比较了20个卷积中性网络的性能,以将患者分类为基于胸部CT扫描的其他肺肺部感染的阳性,健康或患者,作为胸部CT扫描的其他肺部肺部感染,是第一个考虑为COVID-19诊断和使用中介激活映射的高效网络家族,用于可视化模型。使用4173个胸部CT图像在Python中训练和评估。该数据集的标题为“ CT扫描的COVID多类数据集”,分别具有2168、758和1247张均为Covid-19的患者的图像,分别是COVID-19的阳性,健康或患有其他肺部感染的患者。效率网络-B5被确定为最佳模型,F1得分为0.9769 +/- 0.0046,准确性为0.9759 +/- 0.0048,灵敏度为0.9788 +/- 0.0055,特异性为0.9730 +/- 0.0057,精度为0.9751 +/--0.0051。在替代2级数据集上,有效netb5的准确度为0.9845 +/- 0.0109,F1得分为0.9599 +/- 0.0251,灵敏度为0.9682 +/- 0.0099,特异性为0.9883 +/- 0.0150,和精度为0.95526+0.0522323.052323。中间的激活图和梯度加权类激活映射提供了该模型对地面不良性和固结感的感知的人类解剖证据,暗示了有前途的人工智能辅助放射学工具的使用案例。在GPU上的预测速度低于0.1秒,CPU的预测速度为0.5秒,我们提出的模型为COVID-19提供了快速,可扩展且准确的诊断。

With COVID-19 cases rising rapidly, deep learning has emerged as a promising diagnosis technique. However, identifying the most accurate models to characterize COVID-19 patients is challenging because comparing results obtained with different types of data and acquisition processes is non-trivial. In this paper we designed, evaluated, and compared the performance of 20 convolutional neutral networks in classifying patients as COVID-19 positive, healthy, or suffering from other pulmonary lung infections based on Chest CT scans, serving as the first to consider the EfficientNet family for COVID-19 diagnosis and employ intermediate activation maps for visualizing model performance. All models are trained and evaluated in Python using 4173 Chest CT images from the dataset entitled "A COVID multiclass dataset of CT scans," with 2168, 758, and 1247 images of patients that are COVID-19 positive, healthy, or suffering from other pulmonary infections, respectively. EfficientNet-B5 was identified as the best model with an F1 score of 0.9769+/-0.0046, accuracy of 0.9759+/-0.0048, sensitivity of 0.9788+/-0.0055, specificity of 0.9730+/-0.0057, and precision of 0.9751 +/- 0.0051. On an alternate 2-class dataset, EfficientNetB5 obtained an accuracy of 0.9845+/-0.0109, F1 score of 0.9599+/-0.0251, sensitivity of 0.9682+/-0.0099, specificity of 0.9883+/-0.0150, and precision of 0.9526 +/- 0.0523. Intermediate activation maps and Gradient-weighted Class Activation Mappings offered human-interpretable evidence of the model's perception of ground-class opacities and consolidations, hinting towards a promising use-case of artificial intelligence-assisted radiology tools. With a prediction speed of under 0.1 seconds on GPUs and 0.5 seconds on CPUs, our proposed model offers a rapid, scalable, and accurate diagnostic for COVID-19.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源