论文标题
有机晶格中的室温拓扑极化激光
Room temperature topological polariton laser in an organic lattice
论文作者
论文摘要
事实证明,人工晶格中的相互作用的骨器颗粒是研究物质的外来阶段以及非平凡拓扑结构的现象的强大工具。激光和物质的玻色粒准粒子的激子 - 果酸酯已证明可以将光学系统的片上益处与较强的相互作用结合在一起,遗传性形成了其物质特征。但是,严重的半导体平台严格要求低温温度才能操作。在本文中,我们演示了拓扑缺陷的激子 - 孔子激光,在室温下形成了印刷的晶格结构。我们利用源自Discoma disrecoma海葵DSRED的单体红色荧光蛋白,该蛋白具有高度稳定的Frenkel激子。使用图案化的镜腔,我们调整线性su-schrieffer-heeger链的晶格潜在景观,以在域边界和边缘设计拓扑缺陷。在光谱实验中,我们明确地证明了这些拓扑缺陷的偏振子激光。这一进展有望成为一个范式转变,在环境条件下铺平了相互作用的多体物理学的道路。
Interacting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from non-trivial topology. Exciton-polaritons, bosonic quasi-particles of light and matter, have shown to combine the on-chip benefits of optical systems with strong interactions, inherited form their matter character. Technologically significant semiconductor platforms, however, strictly require cryogenic temperatures for operability. In this paper, we demonstrate exciton-polariton lasing for topological defects emerging form the imprinted lattice structure at room temperature. We utilize a monomeric red fluorescent protein derived from DsRed of Discosoma sea anemones, hosting highly stable Frenkel excitons. Using a patterned mirror cavity, we tune the lattice potential landscape of a linear Su-Schrieffer-Heeger chain to design topological defects at domain boundaries and at the edge. In spectroscopic experiments, we unequivocally demonstrate polariton lasing from these topological defects. This progress promises to be a paradigm shift, paving the road to interacting Boson many-body physics at ambient conditions.