论文标题
与贝叶斯深度学习迈向自动卫星连词管理
Towards Automated Satellite Conjunction Management with Bayesian Deep Learning
论文作者
论文摘要
经过数十年的太空旅行后,低地轨道是一个废弃的火箭尸体,死卫星和数百万碎片的垃圾场。足够高的物体不会重新进入并在大气中燃烧,而是在围绕地球的轨道上呆了很长时间。以28,000 km/h的速度,这些轨道的碰撞会产生碎片,并可能触发一系列被称为凯斯勒综合征的撞车事件。这可能会构成行星挑战,因为这种现象可能会升级到阻碍未来的空间操作和破坏对太空和地球科学应用至关重要的卫星基础设施。随着商业实体将卫星的巨型构成在轨道上,进行避免碰撞的操作员的负担将增加。因此,开发预测潜在碰撞事件(连词)的自动化工具至关重要。我们引入了针对此问题的贝叶斯深度学习方法,并开发了与时间序列的连接数据消息(CDMS)一起使用的经常性神经网络体系结构(LSTM),这是空间社区使用的标准数据格式。我们表明,我们的方法可用于同时建模所有CDM特征,包括未来CDM的到达时间,从而预测了连接事件演变与相关的不确定性的预测。
After decades of space travel, low Earth orbit is a junkyard of discarded rocket bodies, dead satellites, and millions of pieces of debris from collisions and explosions. Objects in high enough altitudes do not re-enter and burn up in the atmosphere, but stay in orbit around Earth for a long time. With a speed of 28,000 km/h, collisions in these orbits can generate fragments and potentially trigger a cascade of more collisions known as the Kessler syndrome. This could pose a planetary challenge, because the phenomenon could escalate to the point of hindering future space operations and damaging satellite infrastructure critical for space and Earth science applications. As commercial entities place mega-constellations of satellites in orbit, the burden on operators conducting collision avoidance manoeuvres will increase. For this reason, development of automated tools that predict potential collision events (conjunctions) is critical. We introduce a Bayesian deep learning approach to this problem, and develop recurrent neural network architectures (LSTMs) that work with time series of conjunction data messages (CDMs), a standard data format used by the space community. We show that our method can be used to model all CDM features simultaneously, including the time of arrival of future CDMs, providing predictions of conjunction event evolution with associated uncertainties.