论文标题
从单量表测量中学习量子哈密顿量
Learning Quantum Hamiltonians from Single-qubit Measurements
论文作者
论文摘要
从基于汉密尔顿的量子动力学中测量可观察到的物体是很自然的,并且从测量数据中估算出哈密顿量也是至关重要的话题。在这项工作中,我们提出了一个经常性的神经网络,以从单量测量的时间记录中学习目标汉密尔顿人的参数。该方法不需要基接地状态的假设,而只需测量单Qubit可观测物。它适用于时间无关和时间依赖性的哈密顿人,并且可以同时捕获哈密顿参数的大小和迹象。以最近的邻居相互作用以量子伊辛·哈密顿量为例,我们训练了我们的经常性神经网络,以高精度学习哈密顿参数,包括磁场和耦合值。数值研究还表明,我们的方法具有良好的鲁棒性,以针对测量噪声和反谐效效果。因此,它在估计量子设备的参数和表征基于哈密顿的量子动力学方面具有广泛的应用。
It is natural to measure the observables from the Hamiltonian-based quantum dynamics, and its inverse process that Hamiltonians are estimated from the measured data also is a vital topic. In this work, we propose a recurrent neural network to learn the parameters of the target Hamiltonians from the temporal records of single-qubit measurements. The method does not require the assumption of ground states and only measures single-qubit observables. It is applicable on both time-independent and time-dependent Hamiltonians and can simultaneously capture the magnitude and sign of Hamiltonian parameters. Taking quantum Ising Hamiltonians with the nearest-neighbor interactions as examples, we trained our recurrent neural networks to learn the Hamiltonian parameters with high accuracy, including the magnetic fields and coupling values. The numerical study also shows that our method has good robustness against the measurement noise and decoherence effect. Therefore, it has widespread applications in estimating the parameters of quantum devices and characterizing the Hamiltonian-based quantum dynamics.