论文标题

光线,旋转和灯光的光线:洛伦兹协变配方

Helicity, Spin, and Infra-zilch of Light: a Lorentz Covariant Formulation

论文作者

Aghapour, Sajad, Andersson, Lars, Rosquist, Kjell

论文摘要

在本文中,麦克斯韦理论引入了一种新型保守的洛伦兹协变量张量,称为螺旋张量。螺旋张量的保护表达了Cameron等人引入的螺旋阵列中包含的保护定律,包括螺旋性,自旋和自旋 - 液升或spin-flux或infra-Zilch。螺旋性张量的洛伦兹协方差与以前的保护定律的螺旋性层次结构形成对比,后者需要非Lorentz协变量横向规。螺旋张量显示出作为麦克斯韦理论对偶对称的拉格朗日变异对称性的nue频电流。这种对称转换概括了二元性对称性,并包括角动量旋转部分的保护基础的对称性。

In this paper, a novel conserved Lorentz covariant tensor, termed the helicity tensor, is introduced in Maxwell theory. The conservation of the helicity tensor expresses the conservation laws contained in the helicity array, introduced by Cameron et al., including helicity, spin, and the spin-flux or infra-zilch. The Lorentz covariance of the helicity tensor is in contrast to previous formulations of the helicity hierarchy of conservation laws, which required the non-Lorentz covariant transverse gauge. The helicity tensor is shown to arise as a Noether current for a variational symmetry of a duality-symmetric Lagrangian for Maxwell theory. This symmetry transformation generalizes the duality symmetry and includes the symmetry underlying the conservation of the spin part of the angular momentum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源