论文标题

资源约束设备的自适应精度培训

Adaptive Precision Training for Resource Constrained Devices

论文作者

Huang, Tian, Luo, Tao, Zhou, Joey Tianyi

论文摘要

学习原位是Edge AI的增长趋势。边缘设备上的训练深神经网络(DNN)具有挑战性,因为能量和记忆都受到限制。低精度训练有助于降低单个训练迭代的能源成本,但这并不一定转化为整个训练过程的节能,因为低精度可以降低收敛速度。一个证据是,大多数用于低精度训练的作品在训练过程中保留了模型的FP32副本,这反过来又在边缘设备上施加了内存需求。在这项工作中,我们提出了自适应精确培训。它能够同时节省总培训能源成本和内存使用量。我们使用相同精度的向前和向后传球的模型,以减少训练的内存使用情况。通过评估训练的进度,可以动态地分配层的精度,以便模型更快地学习更长的时间。 APT为用户提供了特定应用程序的高参数,以便在培训能源成本,内存使用和准确性之间进行权衡。实验表明,APT在训练能量和记忆使用方面节省了超过50%的精度损失。可以获得20%的训练能量和记忆使用量,以换取准确的损失1%的牺牲。

Learn in-situ is a growing trend for Edge AI. Training deep neural network (DNN) on edge devices is challenging because both energy and memory are constrained. Low precision training helps to reduce the energy cost of a single training iteration, but that does not necessarily translate to energy savings for the whole training process, because low precision could slows down the convergence rate. One evidence is that most works for low precision training keep an fp32 copy of the model during training, which in turn imposes memory requirements on edge devices. In this work we propose Adaptive Precision Training. It is able to save both total training energy cost and memory usage at the same time. We use model of the same precision for both forward and backward pass in order to reduce memory usage for training. Through evaluating the progress of training, APT allocates layer-wise precision dynamically so that the model learns quicker for longer time. APT provides an application specific hyper-parameter for users to play trade-off between training energy cost, memory usage and accuracy. Experiment shows that APT achieves more than 50% saving on training energy and memory usage with limited accuracy loss. 20% more savings of training energy and memory usage can be achieved in return for a 1% sacrifice in accuracy loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源