论文标题

随机,采样不足的实验的必要性和力量

The necessity and power of random, under-sampled experiments in biology

论文作者

Cleary, Brian, Regev, Aviv

论文摘要

在过去的十年中,一系列开发的变革技术已经实现了不断提高的测量和扰动,但是我们对许多系统的理解仍然受到实验能力的限制。克服这一限制不仅仅是通过现有方法降低成本的问题;对于复杂的生物系统,可能永远无法全面测量和扰动感兴趣的变量的每种组合。但是,越来越多的工作 - 大部分IT基础和先例环境 - 在采样数据下提取了高度的信息。对于各种生物学问题,尤其是对遗传相互作用的研究,此类方法对于获得全面的理解至关重要。然而,没有一个连贯的框架可以统一这些方法,为了解它们的局限性和能力提供了严格的数学基础,使我们能够通过共同的镜头来理解它们令人惊讶的成功,并暗示我们如何将关键概念结晶以改变实验生物学。在这里,我们回顾了有关此主题的先前工作 - 随机化和低维推断的生物学和数学基础 - 并提出了一个通用框架,可以使用随机实验和复合实验在广泛的研究中进行数据收集。

A vast array of transformative technologies developed over the past decade has enabled measurement and perturbation at ever increasing scale, yet our understanding of many systems remains limited by experimental capacity. Overcoming this limitation is not simply a matter of reducing costs with existing approaches; for complex biological systems it will likely never be possible to comprehensively measure and perturb every combination of variables of interest. There is, however, a growing body of work - much of it foundational and precedent setting - that extracts a surprising amount of information from highly under sampled data. For a wide array of biological questions, especially the study of genetic interactions, approaches like these will be crucial to obtain a comprehensive understanding. Yet, there is no coherent framework that unifies these methods, provides a rigorous mathematical foundation to understand their limitations and capabilities, allows us to understand through a common lens their surprising successes, and suggests how we might crystalize the key concepts to transform experimental biology. Here, we review prior work on this topic - both the biology and the mathematical foundations of randomization and low dimensional inference - and propose a general framework to make data collection in a wide array of studies vastly more efficient using random experiments and composite experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源