论文标题
自动调音POI:有效侧向通道分析的分布算法的估计
Auto-tune POIs: Estimation of distribution algorithms for efficient side-channel analysis
论文作者
论文摘要
由于物联网设备的不断提高和多功能性,该设备应将敏感信息私有化,因此对嵌入式设备的侧渠道分析(SCA)攻击在工业领域的可见度获得了可见性。针对SCA的对策的集成和验证可能是一个昂贵且繁琐的过程,尤其是对于经验较低的过程,并且当前的认证程序需要使用多个SCA技术和攻击向量攻击正在测试的设备,这通常意味着高度复杂。本文的目的是简化分析攻击的最关键和繁琐的步骤之一,即兴趣点(POI)选择,从而有助于SCA评估过程。为此,我们介绍了SCA字段中分布算法(EDA)估计的用法,以便自动调整兴趣点的选择。我们在几个实验性用例中展示了我们的方法,包括对同一设备的不同副本对未保护和受保护的AES实现的攻击,以这种方式抛弃可移植性问题。
Due to the constant increase and versatility of IoT devices that should keep sensitive information private, Side-Channel Analysis (SCA) attacks on embedded devices are gaining visibility in the industrial field. The integration and validation of countermeasures against SCA can be an expensive and cumbersome process, especially for the less experienced ones, and current certification procedures require to attack the devices under test using multiple SCA techniques and attack vectors, often implying a high degree of complexity. The goal of this paper is to ease one of the most crucial and tedious steps of profiling attacks i.e. the points of interest (POI) selection and hence assist the SCA evaluation process. To this end, we introduce the usage of Estimation of Distribution Algorithms (EDAs) in the SCA field in order to automatically tune the point of interest selection. We showcase our approach on several experimental use cases, including attacks on unprotected and protected AES implementations over distinct copies of the same device, dismissing in this way the portability issue.